题目
Description
We say a sequence of characters is a palindrome if it is the same written forwards and backwards.
For example, ‘racecar’ is a palindrome, but ‘fastcar’ is not.
A partition of a sequence of characters is a list of one or more disjoint non-empty groups of consecutive characters whose concatenation yields the initial sequence.
For example, (‘race’, ‘car’) is a partition of ‘racecar’ into two groups.
Given a sequence of characters,
we can always create a partition of these characters such that each group in the partition is a palindrome! Given this observation it is natural to ask:
what is the minimum number of groups needed for a given string such that every group is a palindrome
For example:
‘racecar’ is already a palindrome, therefore it can be partitioned into one group.
‘fastcar’ does not contain any non-trivial palindromes, so it must be partitioned as (‘f’, ‘a’, ‘s’, ‘t’, ‘c’, ‘a’, ‘r’).
‘aaadbccb’ can be partitioned as (‘aaa’, ‘d’, ‘bccb’).Input
Input begins with the number n of test cases. Each test case consists of a single line of between 1 and
1000 lowercase letters, with no whitespace within.Output
For each test case, output a line containing the minimum number of groups required to partition the
input into groups of palindromes.Sample Input
3
racecar
fastcar
aaadbccbSample Output
1
7
3
题解
求最少的划分,使所有部分都是回文串
最初的想法是:尽可能长的划分每一部分,最后输出答案
这样有一个问题就是 bcbaabc
答案应该是 2
但是输出会是 4
局部不取最优反而能使结果最优
类似于 贪心 与 背包 的关系
因此换用 动态规划
还是仿照上面的思路
有 dp[i] = min{dp[j-1] + 1}
( j~i
是回文串)
写到这很容易,但是最后 WA
了好几发
问题在于 边界值
由于字符串从 0
开始
因此循环的时候 j-1
有可能为 -1
这是一个随机的值,本地测试的时候可能会是 0
输出正确答案,但是交上去后就只能看脸了
要解决也很简单
从 1~len
循环
判断回文串的时候将位置坐标减去 1
即可
时间复杂度是 O(n3)
不过大多数情况最后一个循环(判断回文串)是立即结束的
代码
/* By:OhYee Github:OhYee Blog:http://www.oyohyee.com/ Email:oyohyee@oyohyee.com かしこいかわいい? エリーチカ! 要写出来Хорошо的代码哦~ */ #include <cstdio> #include <algorithm> #include <cmath> #include <cstring> #include <iostream> #include <map> #include <set> #include <list> #include <queue> #include <stack> #include <string> #include <vector> #include <bitset> #include <functional> using namespace std; const int maxn = 1005; int dp[maxn]; string s; bool isPalindrome(int a,int b) { for(int it1 = a,it2 = b;it1 < it2;it1++,it2--) if(s[it1] != s[it2]) return false; return true; } void Do() { cin >> s; int len = s.size(); int ans = 0; dp[0] = 0; for(int i = 1;i <= len;i++) { dp[i] = dp[i - 1] + 1; for(int j = 1;j < i;j++) if(isPalindrome(j - 1,i - 1)) dp[i] = min(dp[i],dp[j - 1] + 1); } cout << dp[len] << endl; } int main() { int T; cin >> T; for(int i = 1;i <= T;i++) Do(); return 0; }